Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations
نویسندگان
چکیده
An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range.
منابع مشابه
Quantum confinement and electronic properties of tapered silicon nanowires.
Using ab initio calculations, structural tapering of silicon nanowires is shown to have a profound effect on their electronic properties. In particular, the electronic structure of small-diameter tapered silicon nanowires is found to have a strong axial dependence, with unoccupied eigenstates being substantially more sensitive to diameter. Moreover, the states corresponding to the highest occup...
متن کاملAn Ab initio Investigation of Pyrene Electronic Structure
Polycyclic aromatic hydrocarbons (PAHs) are a class of compounds consisting of more than twobenzene rings fused in a linear, angular, or clustered arrangement and do not contain hetero atomsor carry subsistent. PAHs originate from various sources. They are primarily formed byincomplete combustion of carbon-containing fuels such as wood, coal, diesel, fat, or tobacco. Thepresent study reports an...
متن کاملEngineering energy gap of the carbon saturated nanowire and investigating the ammonia molecule doping effects by using the initial calculations (Ab initio)
In this paper size effects, growth orientation and also doping by Ammonia molecule (NH3) on the carbon nanowire properties with saturated diamond structure by (DNw:H) have been investigated. This study was carried out using DFT theory and Kohn-Sham equation by self-consistent field (SCF) that performed by local density approximation (LDA). The nanowires morphology is cylindrical with [111] grow...
متن کاملTransport in Silicon Nanowires: Role of Radial Dopant Profile
We consider the electronic transport properties of phosphorus (P) doped silicon nanowires (SiNWs). By combining ab initio density functional theory (DFT) calculations with a recursive Green’s function method, we calculate the conductance distribution of up to 200 nm long SiNWs with different distributions of P dopant impurities. We find that the radial distribution of the dopants influences the...
متن کاملPrediction of ultra-high aspect ratio nanowires from self-assembly.
We employ a combination of ab initio total energy calculations and classical molecular dynamics (MD) simulations to investigate the possible self-assembly of nanoscale objects into ultrahigh aspect ratio chains and wires. The ab initio calculations provide key information regarding selective chemical functionalization for end-to-end attraction and the subtle interplay of the energy landscape, w...
متن کامل